Reg. No.:			
neg. No.:			

Question Paper Code: 20370

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2018.

Fifth Semester

Computer Science and Engineering

CS 6504 — COMPUTER GRAPHICS

(Regulations 2013)

(Common to PTCS 6504 – Computer Graphics for B.E. (Part-Time)
Fifth Semester – Computer Science and Engineering – Regulations 2014)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is DVST? Give its importance.
- 2. Mention the two basic approaches to area filling on raster systems.
- 3. What is the need of homogeneous coordinates?
- 4. What are the types of clipping?
- 5. Define blobby object.
- 6. Differentiate between parallel and perspective projections.
- 7. What is meant by illumination?
- 8. What is HSV color model?
- 9. What is Morphing?
- 10. Mention the characteristics of a fractal object.

PART B — $(5 \times 13 = 65 \text{ marks})$

11.	(a)	With suitable diagram, describe the architecture of a raster-grap system with a display processor.		
	-	Or		
	(b)	Explain the Bresenham's line drawing algorithm with suitable example. (13)		
12.	(a)	Discuss the various two dimensional basic transformations with suitable figures. (13)		
		Or		
	(b)	Explain the Weiler-Atherton Polygon Clipping. (13)		
13.	(a)	Describe the quadratic surfaces in detail. (13) Or		
	(b)	Explain the depth-buffer method of detecting the visible surfaces. (13)		
14.	(a)	(i) Discuss about the XYZ color model. (6)		
		(ii) Write a note on CIE chromaticity diagram. (7)		
	(b)	Write a note on:		
		(i) RGB color model (6)		
		(ii) CMY color model. (7)		
15.	(a)	Explain the steps involved in the design of animation sequence. (13) Or		
	(b)	Briefly describe the following:		
		(i) Ray Tracing (6)		
		(ii) Koch curve (7)		
		PART C — (1 × 15 = 15 marks)		
16.	(a)	Use the Cohen Sutherland algorithm to clip line P1(70, 20) and P2(100, 10) against a window lower left hand corner (50, 10) and upper right hand corner (80, 40).		
		Or		
.) " 5	(b)	Suppose we have a B-spline curve of degree 3 with a knot vector as follows: (15)		
		u0 to u3 u4 u5 u6 u7 u8 to u11		
		0 0.2 0.4 0.6 0.8 1		
		Insert a new knot $t = 0.5$, find new control points and new knot vector.		